Oracle Data Miner

How to speed up your Oracle Data Mining with in-memory and parallel

Posted on Updated on

Have you have found running a workflow in Oracle Data Miner slow or running the scripts in the database slow ?

No. Good, because I haven’t found it slow.

But (there is always a but) it really depends on the volume of data your are dealing with. For the vast majority of us who aren’t of the size of google, amazon, etc have data volumes that are not that large really and a basic server can process many millions of records extremely quickly using Oracle Data Mining.

But what if we have a large volume of data. In one recent project I had a data set containing over 3.5 billion records. Now that is big data. All of this data sitting in an Oracle Database.

So how can we process over 3.5 billion records in a couple of seconds, building 4 machine learning models in that time? Is that really possible with just using an Oracle Database? Yes is the answer and very easily. (Surely I needed Hadoop and Spark to process this data? Nope!)

The Oracle Data Miner (ODMr) tool comes with a new feature in SQL Developer 4 (and higer) that allows you to manage using Parallel execution and the in-memory DB features. These can be accessed on the ODMr Worksheet tool bar.

NewImage

The best time to look at these setting is when you have created your workflow and are ready to run it for the first time. When you click on the ‘Performance Options’ link, you will get the following window. It will display the list of nodes you have in the workflow and will then indicate if the Degree of Parallel and the In-Memory options can be set for each of the nodes.

NewImage

The default values are shown and you can changes these. For example, in a lot of scenarios you might prefer to leave the Degree of Parallel as System Determined. This will then use whatever the the default is for the database and controlled by the DBA, but if you want to specify a particular value then you can, for example setting the degree of parallel to 4 for the ‘Class Build’ node, in the above image. Similarly for the in-memory option, this will only be available for nodes where the in-memory option would be applicable. This will be where there is a lot of data processing (preparing data, transforming data, performing specific statistics, etc) and for storing any data that is generated by Oracle Data Mining.

But what if you want to change the default values. You can change these at a global level within the SQL Developer Preferences. Here you can set the default to be used for each of the different types of Oracle Data Mining nodes.

NewImage

I mentioned at the start that I’ve been able to build 4 machine learning models using Oracle Data Mining on a data set of over 3.5 billion records, all in a couple of seconds. In my scenario Parallel was set to 16 and we didn’t use in-memory as we didn’t have the licence for it. You can see that machine learning at lighting speed (ish) is possible. This timing is only for building the models, which is the step that consumes the most about of resources and time. When it comes to scoring the data, that is lighting fast. In may scenario, scoring over 300,000 was less than a second, and I didn’t use parallel or anything else to speed things up. Because we didn’t need to.

Go give it a try!

Advertisements

Scheduling ODMr Workflows in SQL Developer 4.2+

Posted on Updated on

A new feature for Oracle Data Mining (ODM) (part of SQL Developer 4.2) is the ability to schedule an ODM workflow to run a defined time or frequency.

This blog post will bring you through the steps need to schedule an ODM workflow using this new feature.

The first thing that you need is an ODMr workflow. The following image is a familiar looking one that I typically use to get a very quick demo of how easy it is to build a machine learning workflow.

NewImage

Just above the workflow worksheet we have a row of icon buttons. In the above image one of these is highlighted by a red box. This is the workflow scheduler. So go ahead on click on it.

NewImage

In most cases you will want to run the entire workflow. The default option presented to is ‘All Nodes’. If you would only like a subset of the nodes to run, you can click-on or select the node in the workflow and then click on the scheduler icon. In our example we are going to run the entire workflow, so select ‘All Nodes’ from the menu.

NewImage

The main scheduler window will open. Here you can set the Start Date and time of the first run, what the Repeat frequency is (none, every day, every week or custom) and to End the Repeat (Never, After, On Date). To schedule a once off run of the workflow just set the Date and Time, set the Repeat to ‘None’ and End Repeat should disappear in this instance. If Repeat was set to another value then you can set a value for End Repeat.

Go ahead and run the scheduler by clicking on the OK button.

NewImage

A Scheduled Jobs window should open that will display the details of the scheduled job. When this job is run in the database, this will be shown in the Workflow Jobs window. Here you can see and monitor the progress of the of the workflow.

NewImage

and that’s it. Nice an simple.

But there is a something you needed to be WARNED about. When you schedule a workflow, Oracle Data Miner will lock the workflow. This is to ensure that no changes can be made to the scheduled workflow. This is indicated with the Locked button appearing on the icon menu. If you click on this button to unlock the workflow, it will also cancel your scheduled jobs associated with this workflow.

NewImage

Also when the scheduled workflow is finished, the workflow will remain locked. So you will have to click on this Locked button to unlock the workflow.

There are a few additional advanced features. These can be found by clicking on the ‘Advanced…’ button in the main scheduler window. The first table displayed allows you to specify if you want an email sent for the different stages of the scheduled job. The second tab allows you to set the Job Priority, Max Failures, Max Run Duration and Schedule Limits.

NewImage

Auditing Oracle Data Mining model usage

Posted on Updated on

In a previous blog post I talked about how you can rename and comment your Oracle Data Mining models. This is to allow you to easily to see and understand the intended use of the data mining model.

Another feature available to you is to audit the usage of the the data mining models. As your data mining environment grows to many 10s or more typically 100s of models, you will need to have some way of tracking their usage. This can allow you to discover what models are frequently being used and those that are not being used in-frequently. You can then use this information to investigate if there are any issues. Or in some companies I’ve seen an internal charging scheme in place for each time the models are used.

The following outlines the steps required to setup the auditing of your models and how to inspect the usage.

Note: You will need to the AUDIT_ADMIN role to audit the models.

First create an audit policy for the data mining model in a particular schema.

CREATE AUDIT POLICY oaa_odm_audit_usage 
ACTIONS ALL 
ON MINING MODEL dmuser.high_value_churn_clas_svm;

This creates a policy that monitors all activity on the data mining model HIGH_VALUE_CHURN_CLAS_SVM in the DMUSER schema.

Now we need to enable the policy and allow to to tract all activity on the model.

AUDIT POLICY oaa_odm_audit_usage BY oaa_model_user;

This will track all usage of the data mining model by the schema call OAA_MODEL_USER. We can then use the following query to search for the audit records for the OAA_MODEL_USER schema.

SELECT dbusername,
       action_name, 
       systemm_privilege_used, 
       return_code,
       object_schema, 
       object_name, 
       sql_text
FROM  unified_audit_trail
WHERE object_name = 'HIGH_VALUE_CHURN_CLAS_SVM';

But there is a little problem with using what I’ve just shown you above. The problem is that it will track all activity on the data mining model. Perhaps this isn’t what we really want. Perhaps we only want to track only certain activity of the data mining model. Instead of creating the policy using ‘ACTIONS ALL’, we can list out the actions or operations we want to track. For example, we want to tract when it is used in a SELECT. The following shows how you can set this up for just SELECT.

CREATE AUDIT POLICY oaa_odm_audit_select 
ACTIONS SELECT 
ON MINING MODEL dmuser.high_value_churn_clas_svm;

AUDIT POLICY oaa_odm_audit_select BY oaa_model_user;

The list of individual audit events you can use include:

  • AUDIT
  • COMMENT
  • GRANT
  • RENAME
  • SELECT

A policy can be setup to tract one or more of these events. For example, if we wanted a policy to track SELECT and GRANT, we would have list each event separated by a comma.

CREATE AUDIT POLICY oaa_odm_audit_select_grant 
ACTIONS SELECT 
ON MINING MODEL dmuser.high_value_churn_clas_svm,
ACTIONS GRANT 
ON MINING MODEL dmuser.high_value_churn_clas_svm,
;

AUDIT POLICY oaa_odm_audit_select_grant BY oaa_model_user;

Using the Identity column for Oracle Data Miner

Posted on Updated on

If you are a user of the Oracle Data Miner tool (the workflow data mining tool that is part of SQL Developer), then you will have noticed that for many of the algorithms you can specify a Case Id attribute along with, say, the target attribute.

NewImage

The idea is that you have one attribute that is a unique identifier for each case record. This may or may not be the case in your data model and you may have a multiple attribute primary key or case record identifier.

But what is the Case Id field used for in Oracle Data Miner?

Based on the documentation this field does not need to have a value. But it is recommended that you do identify an attribute for the Case Id, as this will allow for reproducible results. What this means is that if we run our workflow today and again in a few days time, on the exact same data, we should get the same results. So the Case Id allows this to happen. But how? Well it looks like the attribute used or specified for the Case Id is used as part of the Hashing algorithm to partition the data into a train and test data set, for classification problems.

So if you don’t have a single attribute case identifier in your data set, then you need to create one. There are a few options open to you to do this.

  • Create one: write some code that will generate a unique identifier for each of your case records based on some defined rule.
  • Use a sequence: and update the records to use this sequence.
  • Use ROWID: use the unique row identifier value. You can write some code to populate this value into an attribute. Or create a view on the table containing the case records and add a new attribute that will use the ROWID. But if you move the data, then the next time you use the view then you will be getting different ROWIDs and that in turn will mean we may have different case records going into our test and training data sets. So our workflows will generate different results. Not what we want.
  • Use ROWNUM: This is kind of like using the ROWID. Again we can have a view that will select ROWNUM for each record. Again we may have the same issues but if we have our data ordered in a way that ensures we get the records returned in the same order then this approach is OK to use.
  • Use Identity Column: In Oracle 12c we have a new feature called Identify Column. This kind of acts like a sequence but we can defined an attribute in a table to be an Identity Column, and as records are inserted into the the data (in our scenario our case table) then this column will automatically generate a unique number for our data. Again if we need to repopulate the case table, you will need to drop and recreate the table to get the Identity Column to reset, otherwise the newly inserted records will start with the next number of the Identity Column

Here is an example of using the Identity Column in a case table.

CREATE TABLE case_table (
id_column	NUMBER GENERATED ALWAYS AS IDENTITY,
affinity_card 	NUMBER,
age		NUMBER,
cust_gender	VARCHAR2(5),
country_name	VARCHAR2(20)
...
);

You can now use this Identity Column as the Case Id in your Oracle Data Miner workflows.

NewImage

Oracle Data Miner (ODMr) 4.2 Repository Upgrade

Posted on Updated on

With each new release of the Oracle Data Miner (ODMr) tool (part of SQL Developer) an upgrade of your ODMr Repository is needed. This is because of the numerous new features in the tool. This is particularly the case with ODMr (SQLDev) 4.2.

No most of the new features for ODMr 4.2 will not be visible until you are running a 12.2 Database. But a small number of new features are available if you are running an earlier version of the DB. Check out my blog post on some of these.

Before upgrading the ODMr repository, just like with any upgrade, make sure to do your backups. Although there is some coping of objects done during the repository upgrade (lot story but a few versions ago my ODMr repository and work got wiped during an upgrade), you should always export and save your workflows. You will need to do this using your current version of ODMr/SQL Dev before you start using ODMr 4.2.

When you have saved your workflows etc you can then start using ODMr/SQLDev 4.2.

The easiest way to do the ODMr 4.2 Repository upgrade is to let the tool do it for you. You can do this by trying to open one of your ODMr connections.

IMPORTANT: You will need to have the SYS password for the ODMr upgrade, so have your DBA do this step for you or have them on standby to enter the password for you.

NewImage

NOTE: This upgrade is being done on a CDB/PDB 12.2 DB.

When prompted enter the SYS password.

NewImage

When promoted click on the Start button.

NewImage

The progress bar will let you know things are going.

NewImage

When complete you will get the following.

NewImage

It is always good to check the Log file/report. Especially if you encounter errors !

NewImage

Job Done!

You can now start using all (well almost all) the new features of ODMr 4.2.

When the 12.2 Database is available you will get to see lots more features.

Oracle Data Miner 4.2 EA : New Features

Posted on

A couple of weeks ago during the madness of Oracle Open World there was some new product releases and lots of updates to existing products.

One such product was SQL Developer. They released an Early Adopter version (EA1). This is where you can try out the new version of the product, but you need to be careful as it is not the GA/Production version. So it may have some “features”.

One component of SQL Developer is the Oracle Data Miner tool. This tool GUI workflow based tool based on the Oracle Advanced Analytics option. At OOW we got to hear about the various new Oracle Data Mining features that are coming with Oracle 12.2 Database. For Oracle Data Miner (ODMr) 4.2 (EA) there are a lot of new features but most of these are hidden and will only come available when you are using the Oracle 12.2 DB.

But if you are using a 12.1 (or earlier) then there are some new features. I’ve been having a bit of a look around the EA1 release to see what is new and available to us now (while we wait for 12.2).

If you are on Oracle 12.1 DB or earlier there are two main new features. These are a new Workflow Scheduler and being able to specify in-memory options for ODMr objects. These can be easily found on the ODMr menu bar, are highlighted in the following image.

NewImage

Let us now have a quick look at these.

ODMr Workflow Scheduler

The Workflow Scheduler allows us to take an ODMr Workflow and to use schedule it to run in the Oracle Database at a defined time or for a defined schedule. Previously we would have to write the SQL and PL/SQL code to enable the scheduling. Plus the ODMr schedule was outputted in a number of SQL scripts. So it was a little bit of challenge to get the workflow running on a regular basis.

Now with the new in-built ODMr Schedular we can quickly and easily do this without having to write a line of SQL or PL/SQL. The tool will look after the hard bit for us. We can schedule the entire workflow or certain parts of the workflow.

NewImage

When setting up your schedule you can pick the Start Date, how frequently you would like it run (daily, weekly, monthly or some other custom frequency), when it should end (never, after X number of runs or on a specific date). You can also re-use an existing schedule.

NewImage

For the advanced settings you can setup email notification, the job priority level, maximum run durations and limits, and timezone to use.

NewImage

ODMr In-memory Options

To access the in-memory options you can click on the ‘Performance Options’ button on the ODMr menu or you can access it via the menu (Tools -> Preferences) to get the complete list of in-memory settings.

NewImage

When you use ODMr to build your data mining workflows, ODMr will create a number of objects for each of the nodes of the workflow. These are typically created as tables in your schema. The previous version of ODMr introduced the Performance Options, where you could set the degree of parallel to use for some Nodes and the underlying SQL and PL/SQL code that is generated.

Now we can specify if the tables created should be in-memory, and available of the significant performance response times when you are using the data in these tables. This is particularly useful as we work with larger and larger data sets and we want our lighting fast response from some of our data mining tasks.

In addition to turning on the in-memory option for certain nodes, we can also specify the in-memory configuration settings such as the level of Columnar Compression to use and the Priority Level.

NewImage

(I’ve been on the 12.2 beta so I’ve had a chance to try out many of the new features. There is some good stuff coming and I’ll have blog posts about these when 12.2 comes GA)

Oracle Data Miner (ODM 4.1) New Features

Posted on

With the release of SQL Developer 4.1 we also get a number of new features with Oracle Data Miner (ODMr). These include:

  • Data Source node can now include data sources that contain JSON data, generating JSON schema and has a JSON viewer
  • Create Table can now create data in JSON
  • JSON Query Node allows you to view, query and process JSON data, combine it with relational data, generate sub-group by, and nested columns to be part of input to algorithms
  • New PL/SQL APIs for managing Data Miner projects and workflows. This includes run, cancel, rename, delete, import and export of workflows using PL/SQL.
  • New ODMr Repository views that allows us to query and monitor our workflows.
  • Transformation Node now allows you different ways of handling NULLS.
  • Transformation Node now allows us to create Custom Bins, define bin labels and bin values
  • Overall Workflow and ODMr environment improvements to allow for greater efficiency in workflow behaviour and interactions with the database. So using ODMr should feel quicker and more responsive.

What out for the Gotchas: Although support for JSON has been added to ODMr, as outlined above, you are still a bit limited to what else you can do with your JSON data. Based on the documentation you can use JSON data in the Association and Classification build nodes.

I’m not sure about the other nodes and this will need a bit of investigation to see what nodes can and cannot use JSON data. I’m sure this will all be sorted out in the next release.

Keep an eye out for some blog posts over the coming weeks on how to explore and use these new features of Oracle Data Miner.